Three distinct families of GABAergic neurons in rat visual cortex.
نویسندگان
چکیده
In the cortex inhibition is mediated predominantly by GABAergic interneurons. Although all of these neurons use the same neurotransmitter, studies in the rat frontal cortex have shown that they are molecularly and physiologically diverse. It is not known whether similar subgroups of GABAergic neurons exist in primary visual cortex and how these different inhibitory neurons are inserted into specific cortical circuits. We have used immunostaining with antibodies against gamma aminobutyric acid (GABA), parvalbumin (PV), calretinin (CR), somatostatin (SOM), calbindin (CB) and nitric oxide synthase (NOS) to probe for colocalization of known markers of GABAergic interneurons. The results show that the majority of PV (100%), SOM (89.8%) and CR (93.9%) staining neurons are GABA positive. PV immunoreactive neurons constitute a distinct group that show no overlap with CR, SOM and NOS expressing cells and only a minor overlap (5.3%) with CB. PV immunoreactive cells account for 50.8% of GABAergic neurons. A second group of SOM expressing neurons accounts for 16.9% of GABAergic cells. None of these cells colocalize PV or CR, but 1.7% of SOM neurons stain for NOS and 86.3% show CB immunoreactivity. The third distinct group of CR expressing cells accounts for 17.0% of GABAergic neurons. All of these are PV, CB, SOM and NOS negative. CB expressing neurons represent a heterogeneous group that includes GABAergic and non-GABAergic cells. Our findings indicate that GABAergic neurons in rat area 17 are organized in at least three separate families that can be identified by the expression of PV, CR and SOM. These cells account for 84.9% of GABAergic neurons. These results extend previous observations in rat frontal agranular cortex and suggest that in visual cortex the inhibitory network is composed of similar cell types.
منابع مشابه
Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.
Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that exp...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملMultiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining
The majority of cortical interneurons use GABA (gamma amino butyric acid) as inhibitory neurotransmitter. GABAergic neurons are morphologically, connectionally, electrically and chemically heterogeneous. In rat cerebral cortex three distinct groups of GABAergic interneurons have been identified by the expression of parvalbumin (PV), calretinin (CR) and somatostatin (SOM). Recent studies in mous...
متن کاملBroadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex
Different subtypes of GABAergic neurons in sensory cortex exhibit diverse morphology, histochemical markers, and patterns of connectivity. These subtypes likely play distinct roles in cortical function, but their in vivo response properties remain unclear. We used in vivo calcium imaging, combined with immunohistochemical and genetic labels, to record visual responses in excitatory neurons and ...
متن کاملConnectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex.
In rat visual cortex neurons that are immunoreactive for the calcium-binding protein calretinin (CR+) constitute a distinct family which accounts for 17% of gamma-aminobutyric acid (GABA)-expressing cells. It is not clear, however, (i) whether CR is expressed exclusively in GABAergic neurons and (ii) how CR+ neurons are incorporated into neuronal circuits of rat visual cortex. To address these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 7 4 شماره
صفحات -
تاریخ انتشار 1997